Links for papers

This is list of articles contributed by Toshiyuki Suzuki. (Update: September 2, 2023)

Peer-reviewed papers

  1. N. Okazawa, T. Suzuki, T. Yokota,
    Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials,
    Applicable Analysis, Vol.91, No.8 (2012), 1605--1629.
  2. N. Okazawa, T. Suzuki, T. Yokota,
    Energy methods for abstract nonlinear Schrödinger equations,
    Evolution Equations and Control Theory, Vol.1, No.2 (2012), 337--354.
  3. T. Suzuki,
    Energy methods for Hartree type equations with inverse-square potentials,
    Evolution Equations and Control Theory, Vol.2, No.3 (2013), 531--542.
  4. T. Suzuki,
    Blowup of nonlinear Schrödinger equations with inverse-square potentials,
    Differential Equations and Applications, Vol.6, No.3 (2014), 309--333.
  5. T. Suzuki,
    Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities,
    Funkcialaj Ekvacioj, Vol.59, No.1 (2016), 1--34.
  6. T. Suzuki,
    Scattering theory for Hartree equations with inverse-square potentials,
    Applicable Analysis, Volume 96, No.12 (2017), 2032--2043.
  7. T. Suzuki,
    Virial identities for nonlinear Schrödinger equations with a critical coefficient inverse-square potential Differential Equations and Applications, Vol.9, No.3 (2017), 327--352.
  8. T. Suzuki,
    Scattering theory for semilinear Schrödinger equations with an inverse-square potential,
    Evolution Equations and Control Theory, Vol.8, No.2 (2019), 447--471.
  9. T. Suzuki,
    Semilinear Schrödinger equations with a potential of some critical inverse-square type ,
    Journal of Differential Equations, Vol.268, No.12 (2020), 7629--7668.
  10. T. Suzuki,
    Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials,
    Communications on Pure and Applied Analysis, Vol.20, No.12 (2021), 4347--4377.
  11. T. Suzuki,
    Semilinear Schrödinger equations with a critical scale of the singular electromagnetic field,
    Journal of Differential Equations, Vol.371, No.1 (2023), 151--190.

Proceedings (with peer review process)

  1. T. Suzuki, N.Okazawa, T.Yokota,
    Nonlinear Schrödinger equations with inverse-square potentials on bounded domains,
    Nonlinear Analysis in Interdisciplinary Sciences, GAKUTO International Series Mathematical Sciences and Applications, Vol.36 (2013), 237--245.
  2. T. Suzuki,
    Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains,
    Mathematica Bohemica, Vol.139, No.2 (2014), 231--238.
  3. T. Suzuki,
    Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space,
    Proceedings of the 10th AIMS International Conference (Madrid, Spain), (2015), 1019--1024.
  4. Y. Kugo, M. Sobajima, T. Suzuki, T. Yokota, K. Yoshii,
    Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces,
    Proceedings of the 10th AIMS International Conference (Madrid, Spain), (2015), 754--763.

Reports (without peer review process)

  1. T. Suzuki,
    Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials,
    第32回発展方程式若手セミナー報告集 (2010), 281--286. [written in Japanese]
  2. T. Suzuki,
    逆2乗型ポテンシャル項つき非線形Schrödinger方程式の大域的適切性,
    第33回発展方程式若手セミナー報告集 (2011), 139--144. [written in Japanese]
  3. T. Suzuki,
    抽象的非線形Schrödinger方程式の可解性とその応用,
    第34回発展方程式若手セミナー報告集 (2012), 119--126. [written in Japanese]
  4. T. Suzuki,
    Weak solvability for abstract nonlinear Schrödinger equations, (New developments of the theory of evolution equations in the analysis of non-equilibria)
    RIMS Kôkyûroku Vol.1856 (2013), 56--74.
  5. T. Suzuki,
    Virial identity for Hartree equations with a critical potential,
    第37回発展方程式若手セミナー報告集 (2015), 195--201. [written in Japanese]
  6. T. Suzuki,
    Construction of wave operators for Hartree equations with a critical Hardy potential (Theory of Evolution Equation and Mathematical Analysis of Nonlinear Phenomena),
    RIMS Kôkyûroku Vol.1856 (2013), 1--21.